Baeza-Yates, R. A. (2013). Big data or right data.
Barocas, S., & Selbst, A. D. (2016). Big Data’s Disparate Impact. 
SSRN Electronic Journal. 
https://doi.org/10.2139/ssrn.2477899
boyd, danah m., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. 
Information, Communication & Society, 
15(5), 662–679. 
https://doi.org/10.1080/1369118X.2012.678878
Burnett, S., & Feamster, N. (2014). 
Encore: Lightweight measurement of web censorship with cross-origin requests. 
https://doi.org/10.48550/ARXIV.1410.1211
Croskerry, P. (2002). Achieving Quality in Clinical Decision Making: Cognitive Strategies and Detection of Bias. 
Academic Emergency Medicine, 
9(11), 1184–1204. 
https://doi.org/10.1197/aemj.9.11.1184
Davidson, B. I., Wischerath, D., Racek, D., Parry, D. A., Godwin, E., Hinds, J., Van Der Linden, D., Roscoe, J. F., Ayravainen, L. E. M., & Cork, A. (2023). 
Platform-controlled social media APIs threaten open science. 
https://osf.io/ps32z
Driel, I. I. van, Giachanou, A., Pouwels, J. L., Boeschoten, L., Beyens, I., & Valkenburg, P. M. (2022). Promises and Pitfalls of Social Media Data Donations. 
Communication Methods and Measures, 1–17. 
https://doi.org/10.1080/19312458.2022.2109608
Engel, U., Quan-Haase, A., Liu, S. X., & Lyberg, L. (2021). 
Digital trace data (1st ed., pp. 100–118). Routledge. 
https://www.taylorfrancis.com/books/9781003024583/chapters/10.4324/9781003024583-8
Flöck, F., & Sen, I. (2022). 
Digital traces of human behaviour in online platforms  research design and error sources. 
https://www.gesis.org/fileadmin/user_upload/MeettheExperts/GESIS_Meet_the_experts_Digitaltraces_humanbehaviour.pdf
Friedman, B., & Nissenbaum, H. (1996). Bias in computer systems. 
ACM Transactions on Information Systems, 
14(3), 330–347. 
https://doi.org/10.1145/230538.230561
Goroff, D. L. (2015). Balancing privacy versus accuracy in research protocols. 
Science, 
347(6221), 479–480. 
https://doi.org/10.1126/science.aaa3483
Kramer, A. D. I., Guillory, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. 
Proceedings of the National Academy of Sciences, 
111(24), 8788–8790. 
https://doi.org/10.1073/pnas.1320040111
Naveed, N., Gottron, T., Kunegis, J., & Alhadi, A. C. (2011). 
the 20th ACM international conference. 183. 
https://doi.org/10.1145/2063576.2063607
Olteanu, A., Castillo, C., Diaz, F., & Kıcıman, E. (2019). Social data: Biases, methodological pitfalls, and ethical boundaries. 
Frontiers in Big Data, 
2, 13. 
https://doi.org/10.3389/fdata.2019.00013
Peeters, S. (2022). 
Zeeschuimer. Zenodo. 
https://zenodo.org/record/6826877
Peeters, S., & Hagen, S. (2022). The 4CAT Capture and Analysis Toolkit: A Modular Tool for Transparent and Traceable Social Media Research. 
Computational Communication Research, 
4(2), 571–589. 
https://doi.org/10.5117/ccr2022.2.007.hage
Reeves, B., Ram, N., Robinson, T. N., Cummings, J. J., Giles, C. L., Pan, J., Chiatti, A., Cho, M., Roehrick, K., Yang, X., Gagneja, A., Brinberg, M., Muise, D., Lu, Y., Luo, M., Fitzgerald, A., & Yeykelis, L. (2021). 
Screenomics : A Framework to Capture and Analyze Personal Life Experiences and the Ways that Technology Shapes Them. 
HumanComputer Interaction, 
36(2), 150–201. 
https://doi.org/10.1080/07370024.2019.1578652
Salganik, M. J. (2018). Bit by bit: Social research in the digital age. Princeton University Press.
Sweeney, L. (2013). Discrimination in Online Ad Delivery: Google ads, black names and white names, racial discrimination, and click advertising. 
Queue, 
11(3), 10–29. 
https://doi.org/10.1145/2460276.2460278
Weller, K. (2021). 
A short introduction to computational social science and digital behavioral data. 
https://www.gesis.org/fileadmin/user_upload/MeettheExperts/GESIS_Meettheexperts_Introductioncss.pdf
Zimmer, M. (2010). 
“But the data is already public
”: on the ethics of research in Facebook. 
Ethics and Information Technology, 
12(4), 313–325. 
https://doi.org/10.1007/s10676-010-9227-5